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ABSTRACT

The objective of this study is to examine the impacts from satellite equatorial crossing time (ECT) changes
on the outgoing longwave radiation (OLR) and highly reflective cloud (HRC) datasets and to design appropriate
and robust methods to remove these satellite-dependent biases. The OLR record covers the period from June
1974 to July 1996 and is on a 2.58 grid extending from 308S to 308N over the global Tropics. The HRC record
covers the period from January 1971 to December 1987 and is on a 28 grid extending from 258S to 258N over
the global Tropics. Rotated empirical orthogonal function analysis (REOF) is performed on both the monthly
OLR and HRC anomalies to help distinguish between artificial modes of variability and those associated with
real variability.

Results from the analysis show that significant errors are introduced by changes in the satellite ECT, and they
appear differently in the two datasets. The primary satellite-related bias in the OLR appears as the fourth REOF
mode, which accounts for 4.4% of the OLR anomaly variance. Its spatial pattern exhibits a strong surface
signature over land, with the opposite sign over many of the deep convective regions of the ocean. During some
periods, these biases result in widespread errors of over 10 W m22, which are sustained for several months to
over a year. In other cases, the transition between satellites induces abrupt, artificial changes in the OLR as high
as 16 W m22. In the HRC, the satellite-related bias appears as the leading two REOF modes, which account for
13.1% of the HRC anomaly variance. The spatial patterns of the HRC biases are indicative of an overall change
in the mean climatological convection pattern. The above results can be understood by considering the sampling
and radiometric characteristics of the OLR and HRC datasets.

To remove the satellite ECT biases, the REOF time series of the satellite-related modes are modified by using
the detailed knowledge of the satellite ECTs so that only artificial variability related to the satellite changes is
captured and the natural variability is excluded. These modified time series are used in conjunction with their
associated spatial patterns to compute the satellite-related artificial variability, which is then removed from the
two datasets. These datasets provide an improved resource to study intraseasonal and longer timescale regional
climate variations, large-scale interannual variability, and global-scale climate trends. Analyses of the long-term
trends in both datasets show that the satellite biases induce artificial trends in the data and that these artificial
trends are reduced in the corrected datasets. Further, each of the corrected datasets exhibits a trend in the tropical
western-central Pacific that appears spatially independent of the satellite biases and agrees with results of previous
studies that indicate an increase in precipitation has occurred in this region over the period encompassed by
these datasets.

1. Introduction

In recent years, global climate change and variation
have become significant public concerns. To understand
the climate system and its variations, long-record da-
tasets are essential for determining and distinguishing
natural variability from climate trends. Datasets for such
climate studies often consist of in situ observations (e.g.,
surface observations, upper-air networks, aircraft, ocean
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moorings, etc.), satellite measurements, or derived prod-
ucts from one or both of these sources. In situ obser-
vations are highly valuable for long-term climate change
studies due to the very long records available for par-
ticular points (e.g., temperature and sea level records,
tree rings, etc.). However, these records are usually sub-
ject to extremely inhomogeneous and sparse sampling
in space, especially over oceans, and thus may not al-
ways be adequate for addressing large-scale climate
questions. Satellite measurements and their products, on
the other hand, have much better spatial sampling char-
acteristics for the given period of coverage. For this
reason, they are widely used for studies of large- to
global-scale climate variations on intraseasonal to in-
terannual timescales since many satellite datasets now
extend over several years. Such satellite datasets include
those for the outgoing longwave radiation (OLR; Gruber
and Winston 1978), highly reflective cloud (HRC; Gar-
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TABLE 1. Satellite information related to the production of the OLR and HRC datasets. (SR is scanning radiometer; AVHRR is Advanced
Very High Resolution Radiometer.)

Satellite Launch date Operational date Standby date
Deactivation of end
of operations date

Nominal
crossing

time
(LST)

Orbital
drift rate

(min/
month)

Window channel
and sensor for

OLR

ESAA-9
ITOS-9
NOAA-1
NOAA-2

NOAA-3

NOAA-4
NOAA-5
TIROS-N
NOAA-6
NOAA-7
NOAA-9
NOAA-11
NOAA-12
NOAA-14

26 February 1969
23 January 1970
11 December 1970
15 October 1972

6 November 1973

15 November 1974
29 July 1976
13 October 1978
26 June 1979
23 June 1981
12 December 1984
24 September 1988
14 March 1991
30 December 1994

*
*

12 December 1970
19 November 1972
1 July 1974

19 March 1974
16 October 1974
17 December 1974
15 September 1976
6 November 1978

16 July 1979
24 August 1981
25 February 1985
8 November 1988

17 September 1991
10 April 1995

*
*
*

19 March 1974
16 October 1974
1 July 1974

17 December 1974
15 September 1976
1 March 1979

*
20 June 1983

*
8 November 1988

10 April 1995
*
*

20 November 1972
17 June 1971
19 August 1971

30 January 1975

31 August 1976
18 November 1978
16 July 1979
27 February 1981
31 March 1987
7 June 1986

22 May 1996
*
*
*

1543
1549
1508

0844

0827
0835
0836
1530
0730
1430
1430
1430
0730
1430

2.9
3.4
2.8

20.5

20.6
20.4

0.9
**
**
**
**
**
**
**

*
*
*

SR series

10.5–12.5 mm
SR

10.5–11.5 mm
AVHRR

11.5–12.5 mm
AVHRR

* Not available/applicable.
** Exact drift is given in Fig. 2.

cia 1985), microwave sounding unit (Spencer 1993), sea
surface temperature (SST; Reynolds 1988), International
Satellite Cloud Climatology Project (ISCCP; Rossow and
Schiffer 1991), and Earth Radiation Budget Experiment
(ERBE; Hartmann et al. 1986; Harrison et al. 1990).

In this study, we are concerned with the Outgoing
longwave radiation and highly reflective clouds datasets.
These two datasets have time spans of 22 and 17 yr,
respectively, and each covers several El Niño–Southern
Oscillation (ENSO) events. OLR is an estimate of the
total outgoing infrared radiation at the top of the at-
mosphere inferred from multiband satellite radiation
measurements using the method of Gruber and Krueger
(1984). OLR has been used to study the ENSO phe-
nomenon (e.g., Gill and Rasmusson 1983; Rasmusson
and Wallace 1983; Lau and Chan 1988) and relation-
ships between large-scale characteristics of convection,
sea surface temperature, and wind (e.g., Graham and
Barnett 1987; Gutzler and Wood 1990; Waliser and Gra-
ham 1993); to describe tropical, as well as global, cli-
mate trends (Graham 1995); and to investigate convec-
tive activity and precipitation in the Tropics (Nitta and
Yamada 1989; Morrissey and Graham 1996). HRC is a
binary indicator of the presence of organized deep con-
vection in the Tropics derived subjectively from daily
(daytime) visible and infrared satellite mosaics (Garcia
1985). The monthly HRC dataset is computed by com-
bining these daily images (i.e., zeros and ones) into
maps with units of days per month that deep convection
was present. HRC has been used to study ENSO (e.g.,
Ramage and Hori 1981), to examine the general cli-
matological features of large-scale convection (Zim-
merman et al. 1988; Hastenrath 1990; Waliser et al.
1993; Waliser and Gautier 1993), and to diagnose the
surface wind field (Zebiak 1990).

While the long-record characteristic of the OLR and
HRC datasets makes them an invaluable resource for
climate study, their year-to-year accuracy is suspect due
to the changes that have occurred during the period of
their derivation. Table 1 lists the various satellites used
over the years to derive these two datasets, while Fig.
1 shows similar information graphically. This infor-
mation will be discussed in more detail in the next sec-
tion. However, it can be seen that several different sat-
ellites with different satellite equatorial crossing times
(ECTs), and even different sensor characteristics, were
used over these years to derive these two datasets. Thus,
biases related to satellite and sensor changes may exist
in these datasets.

In fact, in their study of large-scale interannual vari-
ability of monthly OLR over the global Tropics, Chel-
liah and Arkin (1992) performed rotated principal com-
ponent analysis on OLR for the period from 1974 to
1989 and found what appeared to be a ‘‘nonphysical’’
mode (the third mode in their study). They pointed out
that the changes in the time series for this mode were
closely related to the abrupt changes in the satellite
ECTs associated with morning and afternoon satellites.
However, no attempt was made to remove these biases.

By comparing the OLR and rainfall in India, Gadgil
et al. (1992) deduced that there is a systematic bias in
the OLR dataset and pointed out that the bias should
be removed before the dataset is used for the study of
interannual variations. They found that there are large
systematic differences between the mean July–August
OLR for the periods 1974–77 [National Oceanic and
Atmospheric Administration (NOAA) scanning radi-
ometer (SR) series, i.e., NOAA-2–NOAA-5; morning
ECT] and 1982–85 (NOAA-7; afternoon ECT). In de-
signing a scheme to correct the biases, they assumed,
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FIG. 1. Satellite information. Dates labeled in the figure are satellite launch (left end) and deactivation–end of operations (right end);
question marks (?) denote unknown date.

somewhat arbitrarily, that the distribution of OLR dif-
ferences between the two periods for each grid should
be symmetric about zero. Then OLR from NOAA-7 was
modified through a second-order fitting equation with
coefficients to be determined so that the difference of
OLR for the two periods would show symmetric dis-
tributions about zero. In their scheme, the part of the
OLR chosen to be modified is arbitrary (e.g., it could
be the NOAA SR series instead of NOAA-7). In other
words, the correction is not linked explicitly to a specific
bias producing cause, and the method may result in an
artificial offset to the corrected OLR. Moreover, it would
be difficult to apply this method to the full OLR record,
which contains satellites with more than just two distinct
ECTs.

Kayano et al. (1995) also reported a satellite-related
mode in their empirical orthogonal function analysis
(EOF) of OLR anomalies. They developed a simple
method to remove these biases in the OLR by removing
the mean patterns of OLR anomalies for each of the
three periods during which TIROS-N, NOAA-6, and

NOAA-7, -9, and -11 were operational, respectively.
However, as they recognized and pointed out, the method
would remove real interannual variability as well. Fur-
thermore, the methods of Kayano et al. (1995), as well
as that of Gadgil et al. (1992), do not take into account
the effects due to the slow drift of satellite ECTs.

While the discussion and studies above focus on the
OLR dataset, the HRC dataset is subject to similar bi-
ases, given that it is derived mostly from the same set
of satellites. The extreme utility of both the OLR and
HRC datasets warrants a more comprehensive and com-
plete method to remove the biases from these datasets.
In this study, rotated empirical orthogonal function anal-
ysis (REOF) is performed on the OLR and HRC da-
tasets. Based on results from this analysis, along with
detailed satellite information, the modes related to sat-
ellite ECTs, as well as modes that have physical mean-
ings, are identified. The methods are developed to re-
move the corresponding biases from the datasets. Com-
pared to those of Gadgil et al. (1992) and Kayano et al.
(1995), the methods developed in this study are more
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FIG. 2. Satellite equatorial crossing times. Exact satellite crossing times after 1978 are provided by the TeraScan (a product of SeaSpace,
San Diego, CA) weather satellite receiving system database, while before 1979 they are only estimates (see text for further details). Numbers
within vertical lines denote periods with features listed in the figure.

explicitly linked to the causes of the bias and in addition
are more robust. Section 2 provides a detailed descrip-
tion of the datasets and pertinent satellite information.
Section 3 discusses the methodology applied in this
study. Section 4 identifies and removes the biases from
the datasets. Section 5 discusses the differences between
the biases in the OLR and HRC datasets and also dis-
cusses the overall trends in the datasets before and after
the bias removal procedures. Section 6 provides a brief
summary of the results.

2. Data and satellite information

a. Satellite information

Since the primary goal of this study is to remove the
biases in the OLR and HRC datasets related to satellite
ECTs, it is essential to know these ECTs, along with
any other relevant sensor or methodology information,
for all the satellites used to derive the OLR and HRC
datasets. Table 1 lists this information for all the relevant

satellites. These satellites are sun-synchronous and polar
orbiting, and thus in the Tropics provide only two passes
per day, 12 h apart. Only the daytime ECTs are listed
in Table 1. Satellite standby dates are also listed. A
satellite on standby only transmits sensor health and
housekeeping information, and thus is not used in the
derivation of the OLR and HRC datasets. The satellite
ECTs listed in Table 1 are not exact due to the orbital
drift of each satellite and are thus referred to as the
nominal ECTs. The nominal ECT is listed in various
sources (Johnson et al. 1976; Gruber and Krueger 1984;
Gruber and Chen 1988; Chelliah and Arkin 1992; L.
Ranne 1996, personal communication). Figure 2 shows
the drift of the ECT for each satellite. After 1978, the
ECT is based on information in the orbital element da-
tabase of the TeraScan1 weather satellite receiving sys-
tem. Before 1979, the drift rate of the ECT for each

1 TeraScan is a product of SeaSpace, of San Diego, California.
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TABLE 2. Timetable of the satellites and their equatorial crossing
times used to produce the OLR dataset.

Data period Satellite(s)

Crossing
time

(LST)

June 1974–February 1978
March 1978–December 1978
January 1979–January 1980
February 1980–August 1981
September 1981–February 1985a

March 1985–November 1988b

December 1988–August 1994
September 1994c–December 1994
January 1995–July 1996

NOAA-2–NOAA-5
Missing data
TIROS-N
NOAA-6
NOAA-7
NOAA-9
NOAA-11
NOAA-12
NOAA-14

A.M.

P.M.
A.M.
P.M.
P.M.
P.M.
A.M.
P.M.

a Monthly mean for February 1985 is a mixture of NOAA-7 and
NOAA-9.

b Monthly mean for November 1988 is a mixture of NOAA-9 and
NOAA-11.

c Monthly mean for September 1994 is a mixture of NOAA-11 and
NOAA-12.

satellite was taken from Johnson et al. (1976). This lin-
ear drift rate is used in Fig. 2, along with the assumption
that the nominal ECT is the ECT at launch.

From Table 1 and Fig. 1, we can see that there are
periods during which more than one satellite is opera-
tional. For example, NOAA-6, a satellite with a morning
ECT, was operational starting 16 July 1979 and was on
standby starting 20 June 1983. However, NOAA-7, a
satellite with an afternoon ECT, was operational starting
24 August 1981, which is before the time that NOAA-
6 was put on standby. For these overlapping periods,
Table 1 does not provide enough information to deter-
mine which satellite was used to derive the OLR or
HRC dataset. Fortunately, the derivation of the OLR
dataset for most periods has been well documented in
many sources (Gruber and Krueger 1984; Gruber and
Chen 1988; Chelliah and Arkin 1992; Kayano et al.
1995; J. Janowiak 1996, personal communication).
Based on these sources, Table 2 lists each period and
the corresponding satellite(s) used to derive the OLR.
The only undocumented period is from June 1974 to
February 1978, when NOAA SR series (NOAA-2–
NOAA-5) was operational. However, these satellites
share essentially the same ECT, sensor, and water vapor
window channel, and thus for the purposes of this study
are viewed as if they represent the same satellite.

Unfortunately, information on the derivation of the
HRC dataset is much less clear. The only information
source is the HRC atlas (Garcia 1985), which has been
found to contain some inaccuracies. For example, the
atlas lists ITOS-1, ESSA-9, and NOAA-1 as the sources
for the HRC data during the period from January 1971
to May 1974 and indicates that they have morning ECTs.
However, we can see from Table 1 (or Fig. 1, or Rao
et al. 1990) that these satellites all have afternoon ECTs.
Also, the latest date of the end of operations of these
three satellites is 20 November 1972, with the longest-
lasting satellite being ESSA-9. This means that during

the period from November 1972 to May 1974, the HRC
could not have been derived from these three satellites.
Instead, we find that only NOAA-2 and NOAA-3 were
operational during this period. While such uncertainties
make it harder for us to remove the satellite-related bias
in the HRC dataset, significant effort has been under-
taken in this study to minimize their influence. First,
information in Table 1 and Fig. 1 are used to identify
periods when there was only one operational satellite.
For these periods, it is possible to determine with greater
certainty whether the HRC was derived from a morning
or afternoon satellite for the period. Then, for periods
with more than one operational satellite, which fortu-
nately are few and relatively short (a few months each),
the satellites used for HRC derivation are determined
from a combination of the available documentation and
results of the rotated empirical orthogonal function anal-
ysis. This procedure will be discussed in more detail
below; however, the results pertaining to the estimated
satellite timetable of the HRC derivation are listed in
Table 3, along with changes from the documentation
given in Garcia (1985).

b. OLR

NOAA SR series satellites used the scanning radi-
ometer, while TIROS-N and NOAA-6, -7, -9, -11, -12,
and -14 used the Advanced Very High Resolution Ra-
diometer (AVHRR) to estimate OLR (Table 1). The win-
dow channels chosen to estimate OLR are also listed.
OLR flux estimates were derived by using theoretical
infrared radiative transfer models to convert the nar-
rowband radiance measurements from the chosen win-
dow channel to broadband OLR fluxes (Gruber and
Krueger 1984). The OLR dataset that is available from
NOAA has had some corrections applied for the various
changes in instruments and spectral windows (Gruber
and Krueger 1984), but not for changes in local mea-
surement times among different NOAA satellites. Table
1 lists the various NOAA satellites, along with their
nominal ECTs, applicable window channels, and op-
erational period. Figure 2 shows the known drift of the
ECT. As mentioned earlier, prior to 1979, the drifts
shown in Fig. 2 are estimated values.

The OLR dataset used in this study is for monthly
mean OLR on a 2.58 lat 3 2.58 long grid. The dataset
is 266 months long, from June 1974 to July 1996, with
a 10-month gap from March 1978 to December 1978,
and covers the domain 308S to 308N. The annual cycle
of the OLR is computed based on the whole dataset,
and then the OLR anomalies are computed with respect
to the annual cycle. In the following sections, if not
explicitly specified, OLR refers to the OLR anomalies.

c. HRC

Garcia (1985) developed a subjective method for us-
ing both visible and infrared satellite mosaics (infrared
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TABLE 3. Timetable of the satellites and their equatorial crossing times used to produce the HRC dataset, along with remarks concerning
the determination of whether the given period–satellite was considered to have a morning or afternoon satellite ECT.

Data period
Crossing

time Satellite(s) Remarks

January 1971–March 1972 P.M. ITOS-1, ESSA-9,
NOAA-1a

From Garcia (1985)

April 1972–October 1972 A.M. ESSA-9a Garcia (1985) specifies P.M. However, during the last 7
months of ESAA-9, the data exhibit features more similar
to A.M. satellites consistent with the drift seen in Fig. 2.

November 1972–May 1974 A.M. NOAA-2–NOAA-3a Garcia (1985) specifies ITOS-1, ESSA-9, and NOAA-1.
However, this period occurs after the lifetime of these sa-
telittes.

June 1974–February 1978 A.M. NOAA-2–NOAA-5 From Garcia (1985)
March 1978–December 1978 A.M. DMSPb series

(F-1, F-2, F-3)
F-1: P.M. crossing time; F-2, F-3: A.M. crossing time. No

information on which satellite was actually used; set to
A.M.

January 1979–June 1979
July 1979–August 1979
September 1979–January 1980
February 1980–August 1981
September 1981–January 1982
February 1982–May 1982
June 1982–September 1982
October 1982–February 1985
March 1985–December 1987

P.M.
A.M.
P.M.
A.M.
A.M.
P.M.
A.M.
P.M.
P.M.

TIROS-N
NOAA-6
TIROS-N
NOAA-6
NOAA-6
NOAA-7
NOAA-6
NOAA-7
NOAA-9

From Garcia (1985)
Garcia (1985) specifies TIROS-NC

From Garcia (1985)
From Garcia (1985)
Garcia (1985) specifies NOAA-7c

From Garcia (1985)
Garcia (1985) specifies NOAA-7c

From Garcia (1985)
From Garcia (1985)

a Infrared not used until 1974.
b DMSP: Defense Meteorological Satellite Program.
c Both satellites indicated were operational, O. Garcia notes (1996, personal communication) that either satellite may have actually

provided the data for the HRC. Better agreement was found using the satellite indicated; see section 4d.

mosaics were not used until June 1974) to create daily,
binary indicators of tropical large-scale deep convec-
tion. In creating this dataset, called the highly reflective
clouds, daytime infrared information was used as a
proxy for cloud-top height so as to filter out low- and
midlevel clouds, and thus to indicate the presence of
high-level convective cloud systems. The daytime vis-
ible satellite mosaics are used to exclude the large-scale
thin cirrus clouds associated with convective systems.
The resulting HRC dataset is thus composed of once-
per-day maps of ones and zeros with 18 lat 3 18 long
spatial resolution, where ones identify regions of deep
convection. The monthly HRC data (i.e., frequency
counts) are formed from these daytime images and thus
have units of days per month (of deep convection pres-
ent at each grid point).

The HRC data used in this study are the monthly
values on a 28 3 28 grid. The dataset is 204 months
long, from January 1971 to December 1987, and covers
258S to 258N. The annual cycle of the HRC is computed
based on the whole dataset, and the HRC anomalies are
computed with respect to the annual cycle. In the fol-
lowing sections, if not explicitly specified, HRC refers
to the HRC anomalies.

3. Methodology

One frequently used technique for studying interan-
nual and low-frequency climate variability is empirical
orthogonal function analysis. This technique is adopted
in this study to identify the most common modes of

variability in the tropical OLR and HRC datasets, as
well as to pinpoint the modes that are related to satellite
ECTs (hereafter referred as satellite modes). Unrotated
empirical orthogonal function analysis maximizes for
each mode (i.e., often referred to as an eigenvector,
eigen function, or principal component) the variance
explained over the entire analysis domain, subject to the
requirement that the modes have strict spatial and tem-
poral orthogonality. Due to the criterion that the first
mode must contain the maximum variance possible, the
second mode the maximum of the remaining variance,
and so on, the resulting EOF modes are sensitive to the
analysis domain and the spatial resolution of the data.
These latter features make unrotated EOF analysis less
accurate in portraying the physical relationship embed-
ded within the data (Richman 1986; Chelliah and Arkin
1992). Rotated EOF analysis, on the other hand, can
greatly alleviate the above problems. REOF analysis
tends to yield more intuitively or physically meaningful
results in space and time (Horel 1981), while resolving
the same total variance as the unrotated analysis. Rich-
man and Lamb (1985) discuss in detail, with illustra-
tions, the advantages of rotated over unrotated eigen-
mode analysis. Richman (1986) reviews the features of
unrotated and rotated principal components and dem-
onstrates that the rotated principal components are also
less subject to sampling errors than the unrotated com-
ponents.

In this study, unrotated EOF analysis is first per-
formed on both the OLR and HRC anomalies. Rotated
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EOF analysis, which was the type of analysis that al-
lowed Chelliah and Arkin (1992) to identify an OLR
satellite mode, is then performed using only the EOF
modes judged to be significant at the 99% level. This
turns out to be the first seven EOF modes for the OLR
and the first eight modes for the HRC. A description of
the significance test and its results are given in the ap-
pendix. Aside from the results of this test, the REOF
analysis is highly stable: choosing cutoff numbers be-
tween 6 and 15 only causes minor changes in the first
few eigenmodes, and the satellite modes are nearly iden-
tical in each case. Furthermore, the first few modes are
highly insensitive to a wide variety of rotations (e.g.,
orthogonal quartimax and varimax, or oblique promax
and Harris–Kaiser). The rotations shown here were pro-
duced from an orthogonal quartimax rotation.2 This pro-
cedure derives an orthonormal transformation matrix
that minimizes the function

M P

4b ,O O ji
j i

where M is the number of retained modes, P is the
number of spatial points, and b is the eigenvector load-
ings. This transformation matrix multiplies the matrix
of unrotated EOF loadings, yielding the matrix of ro-
tated EOF loadings [i.e., the rotated vectors, which tend
to have a ‘‘simpler structure’’; Richman (1986)]. A dem-
onstration of the advantage of using REOF over EOF
in this study will be shown in the next section.

4. Analysis and results

a. OLR mode identification

To remove biases from the datasets, we must first
know where the biases come from and assess how large
they are. To analyze the OLR dataset, REOF analysis
is performed and then each eigenmode is examined to
determine whether it is geophysically based or related
to the satellite biases discussed in section 2 (e.g., ECT
bias). While the cutoff number for the EOF rotation is
seven EOF modes (see section 3), only the six leading
rotated eigenmodes are shown and discussed. Figure 3
shows the spatial loading patterns and associated time
series of the OLR REOFs. The spatial patterns are
smoothed with a 38 3 38 grid box before contouring.
Regions with negative loadings are stippled in the spa-
tial patterns.

The first mode (Fig. 3a) accounts for 9.3% of the
anomaly variance. Its spatial loading shows a strong,
large-scale, east–west dipole near the equator, with a
negative center near 58N, 1308E and a positive center
near 58S, 1708W. Its associated time series clearly shows
all the major El Niño (warm) and La Niña (cold) events

2 International Mathematical and Statistical Library routine DFRO-
TA.

of the equatorial Pacific, such as the La Niña events of
1975–76 and 1988–89, and the El Niño events of 1982–
83, 1987, and 1992. For comparison, the smoothed
time–longitude variation of meridionally averaged SST
anomalies from 58S to 58N is shown in Fig. 4; regions
with negative SST anomalies are stippled. This canon-
ical ENSO mode, which is essentially the same as the
first mode in Chelliah and Arkin (1992), represents the
convection anomaly associated with an anomalous
Walker circulation with rising (sinking) motion over the
eastern Indian Ocean, the Maritime Continent, and the
equatorial western Pacific, and sinking (rising) motion
over the central and eastern equatorial Pacific during a
tropical cold (warm) ENSO event. These canonical
ENSO features are consistent with the results of Ro-
pelewski and Halpert (1987, 1989) who studied the
global precipitation patterns associated with the low-
(El Niño) and high- (La Niña) index phases of the
Southern Oscillation index.

The second mode (Fig. 3b), which accounts for 6.8%
of the anomaly variance, has a very similar spatial load-
ing pattern to the first mode except for a relative sign
change over many of the regions outside the two centers
of high loading in the equatorial Pacific. One can see
from Fig. 4 that the global–equatorial SST pattern ap-
pears to be dissimilar among the different El Niño and
La Niña events. For example, the 1972–73 and 1986–
87 El Niño events are marked by warming at nearly all
longitudes, while the El Niños during 1977–78, 1982–
83, and 1992 show weak cooling in the Indian and At-
lantic Oceans. A similar observation can be made for
the La Niña events occurring in the record. Therefore,
this mode appears to account for much of the ENSO
variability that is not common to the canonical pattern
(i.e., Fig. 3a).

The 1982–83 El Niño was unique in two ways: it was
the most dramatic among all the El Niños recorded by
this dataset, and it appeared to initiate in the western
Pacific rather than in the eastern Pacific, as do most
other El Niños (Philander 1991). The features of this
El Niño that are common to most other El Niños are
captured by a negative peak in the first mode time series
and to a lesser extent by a positive peak in the second
mode time series. However, those features that are es-
pecially unique to the 1982–83 event are dominant char-
acteristics of the third eigenmode (Fig. 3c), which ac-
counts for 5.3% of the anomaly variance. The main
feature of the associated time series is a very large neg-
ative peak around the time the warm event occurred
(December 1982 to February 1983). The spatial loading
shows an eastward shift of the anomalous convective
centers to the eastern equatorial Pacific relative to the
first (canonical ENSO) mode. The positive center is
shifted to about 58S, 1408W, and the negative center is
at about 58N, 1608E. Following Chelliah and Arkin
(1992), this mode is referred to as ‘‘1982–83 mode’’
due to its significant relation to the 1982–83 El Niño.

The fourth mode (Fig. 3d; see Fig. 5a), which ac-
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FIG. 3. REOF time series and spatial patterns of the OLR anomalies.
Loadings have units of W m22. Regions with negative loadings are
stippled. Contour intervals are 3 (2) W m22 for the first (last) three
maps.
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FIG. 4. Time–longitude map of average SST anomalies from 58S to 58N. Regions with
negative SST anomalies are stippled. Contour interval is 0.88C.

counts for 4.4% of the anomaly variance, is similar to
mode 3 in Chelliah and Arkin (1992; see their Fig. 1).
It has negative spatial loading over most of the land-
masses in the Tropics and the central equatorial Pacific
near the date line, and positive loading over most of the
Indian Ocean and some part of the western Pacific. Its
time series shows a strong association with changes in
the satellite ECTs (Fig. 2). For example, during the pe-
riod from February 1980 to August 1981 when NOAA-
6 (morning ECT) was used to derive OLR (Table 2),
the time series amplitude of this mode oscillates near
2.0, while it oscillates near 20.5 for the period from
September 1981 to August 1994, when NOAA-7, -9, and
-11 (afternoon ECTs) were used to derive OLR. Over
the region of the Sahara Desert, the spatial loading value

is about 5 W m22; thus, the OLR difference associated
with this mode for these two periods is about 12 W m22.
The reasons for this bias will be described below.

The fifth and sixth modes (Figs. 3e and 3f), which
account for 4.0% and 3.9% of the anomaly variance,
respectively, each exhibit an east–west dipole feature in
the vicinity of the tropical Indian and western Pacific
Oceans. Their maxima–minima are offset relative to
each other by about 308 in longitude, which represents
about a 908 phase shift between the two dipoles. The
spatial structures of these two modes, along with the
(relatively) high-frequency fluctuations evident in their
time series, suggest that these two modes represent the
eastward-propagating intraseasonal variations in OLR
associated with the Madden–Julian oscillation (Madden
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FIG. 5. Satellite equatorial crossing time modes: (a) OLR REOF mode 3, same as Fig. 3d; (b) and (c) HRC REOF modes 1 and 2, same as
Figs. 9a,b. Linear trends in the (d) OLR and (e) HRC after the ECT bias-removing procedures have been applied, same as Figs. 12c,d.

TABLE 4. Correlations between the satellite equatorial crossing time and the time series for each OLR EOF and REOF mode for the period
when the exact crossing time is known (i.e., after 1978, N 5 211 months; see section 2). Correlations greater than 0.3 are in bold.

Mode 1 2 3 4 5 6 7

EOF correlation
REOF correlation

20.18
20.04

0.21
0.00

0.32
0.03

0.19
0.72

20.27
20.17

0.57
20.02

0.02
20.08

and Julian 1972). Evidence for this assertion comes from
the nearly identical patterns produced by the EOF anal-
yses of intraseasonally bandpassed OLR of Murakami
et al. (1986) and Lau and Chan (1988). In the former
(latter), a filter with half-power points at 30–60 and (20–
70) days was applied. In both cases, the first two modes
of their EOF decompositions are nearly identical to
those shown in Figs. 3e and 3f.

It should not be a surprise that the eigenmodes in this
study are not exactly the same as in Chelliah and Arkin
(1992) and Kayano et al. (1995), given the differences
between the input datasets. Chelliah and Arkin (1992)
used only 15 yr of OLR data from June 1974 to De-
cember 1987 on a 58 lat 3 108 long grid over the domain
308S to 308N, with the OLR anomalies computed from
a climatology based on the 10-yr period from 1979 to
1988. Kayano et al. (1995), on the other hand, used
OLR data for the period from January 1979 to December
1988 over the domain 408S to 408N on a 2.58 3 2.58
grid, with the anomalies computed from the same 10-yr

(1979 to 1988) climatology as in Chelliah and Arkin
(1992). Kayano et al. also applied a low-pass filter on
the OLR anomalies before their EOF analysis.

To demonstrate that the variability associated with the
fourth mode is of a significantly artificial nature, both
a statistical illustration and a physical example will be
given. The statistical illustration is given in Table 4,
which shows the correlations between the ECT time
series (for the period when the exact ECT was available)
and the amplitude time series from each of the modes
in the REOF and unrotated EOF analyses. These cor-
relations demonstrate how the rotation procedure was
able to isolate ECT variability that was associated with
several modes in the unrotated analysis (i.e., the third
and sixth modes, and to a lesser extent the second and
fifth modes) into a single mode in the rotated analysis
(fourth mode). Second, the high value for the correlation
strongly suggests that much of the variability associated
with the fourth mode is related to ECT changes.

The physical example is embodied in the relation be-
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FIG. 6. (top) Mean diurnal cycle of OLR over the Sahara con-
structed by Kondragunta and Gruber (1995) from three ERBE sat-
ellites during their overlap period, 12 June 1986 to 19 January 1997;
thin horizontal line denotes the mean. (bottom) Bias in estimating
the mean from the top figure when using only two observations sep-
arated by 12 h.

FIG. 7. Scatterplot of the satellite ECTs and the amplitude time
series from the fourth OLR REOF mode. Solid line shows the order-
three polynomial best-fit regression of the data.

tween the fourth REOF mode and the plots in Fig. 6.
The top plot shows the diurnal cycle of OLR over the
Sahara Desert taken from Kondragunta and Gruber
(1995), which was constructed using data from three
ERBE satellites during a 45-day overlap period from 6
December 1986 to 19 January 1987.3 The horizontal
line gives the ‘‘true’’ mean of this (near-hourly resolved)
24-h diurnal cycle. The bottom plot shows the difference
between the daily mean obtained by sampling the di-
urnal cycle only twice, 12 h apart, and the true mean

3 Of the four locations shown Kondragunta and Gruber’s report
(the Sahara, the southeast Pacific, the southeast Atlantic, and the
central Andes), only the Sahara was chosen for comparison since the
climate there tends to be the most stationary of the four locations
with respect to synoptic, seasonal, and interannual variations. Such
variations render the 45-day (El Niño year) composites of the other
locations relatively meaningless for the present purpose.

in the top plot. As illustrated in the plot, the (two sam-
ple) diurnal mean obtained using NOAA-6 observation
times will be about ;7.5 W m22 lower than the true
mean and the (two sample) diurnal mean obtained using
NOAA-7 will be about ;2.0 W m22 higher, representing
about a 9.5 W m22 difference between the mean Sahara
OLR observed by these the two satellites. This is rea-
sonably consistent with the magnitude of the mode 4
changes occurring over the Sahara between the NOAA-6
and NOAA-7 time periods, given the short time period
for deriving the composite diurnal cycle. Similar results
hold for differences between NOAA-2 and NOAA-7.

While the above discussion is only representative of
one location, some additional confidence regarding the
spatial structure of the ECT mode is afforded by the
diurnal variations in ISCCP total cloudiness described
by Kondragunta and Gruber (1994). The spatial patterns
of their first two EOF modes of mean January diurnal
variations imply a strong systematic change in the nature
of the diurnal cycle in cloudiness between the positive
and negative regions of Fig. 3d. Unfortunately, little
more can be garnered from their results since the ques-
tion involves knowing, in addition to the diurnal cycle
of cloudiness, how this cycle translates into the diurnal
cycle of local OLR and then, even more complex, how
the twice per day (12 h) satellite sampling of this cycle
ends up producing a bias from the long-term mean (e.g.,
Fig. 6, bottom).

While the above discussion is meant to illustrate that
a large portion of the variability of the fourth OLR
REOF mode can be attributed to satellite ECT changes
(i.e., abrupt jumps and longer-term trends), some portion
of the variability is associated with natural variability
that from month to month has a nonzero projection onto
this mode’s spatial pattern. It is important that to the
extent possible, only the ECT-related variability be re-
moved from the dataset. Figure 7 shows the scatterplot
of the amplitudes of the fourth mode (time series in Fig.
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FIG. 8. Estimate of true artificial ECT variability (thick line) associated with the fourth OLR
REOF mode based on the regression shown in Fig. 7. The black line is the actual amplitude time
series from the fourth mode (i.e., Fig. 3d).

TABLE 5. Correlation of OLR REOF time series before and after
bias removal. Correlations greater than 0.3 are in bold.

Mode
no.

Before

1 2 3 4 5 6 7

After
1
2
3
4
5
6
7

0.94
20.04
20.24
20.06

0.04
0.21

20.02

20.32
0.09

20.73
20.08

0.03
0.59
0.03

0.07
0.99
0.05

20.01
0.03

20.06
20.06

20.04
0.04

20.16
0.16
0.04

20.23
0.06

20.01
20.03
20.07

0.12
0.97

20.11
0.06

0.04
0.01
0.14
0.93

20.08
0.32
0.00

20.02
20.05
20.17

0.08
0.01

20.17
20.97

3d) and the associated ECT values. Note, in absence of
exact times, that the ECT values before 1979 were ap-
proximated as 0800 LST using the data in Table 1. The
relationship in Fig. 7 is similar to that shown in Fig. 6
(bottom), each having an inflection point around 0600
LST. The sign is different due to the fact that the value
in Fig. 7 has to be weighted by the spatial pattern, which
is negative over the Sahara. Once this weighting is taken
into account, the two show good agreement over the
Sahara. As would be the case when removing the sat-
ellite sampling bias for the Sahara alone (e.g., Fig. 6,
bottom), it is necessary to remove the ‘‘global’’ depen-
dency of the error–bias on the local observing time,
represented here by the scatterplot in Fig. 7 and the
associated spatial pattern in Fig. 3d. The order three
polynomial regression shown in Fig. 7 is a ‘‘best guess’’
at this dependency (y 5 0.42 2 1.61x 1 0.59x2 2
0.047x3, where x is the A.M. ECT).

Figure 8 shows an ‘‘interpolated’’ amplitude (thick
line) using the regression relation from Fig. 7. In order
to produce an estimate of the biases–errors introduced
into the tropical OLR monthly dataset, the spatial pattern
of the fourth REOF mode (Fig. 3d) is multiplied by the
synthetic time series shown in Fig. 8 to obtain the part
of the anomaly variance that is believed to be only due

to ECT changes. By using this interpolated curve and
not the actual amplitudes of the fourth mode (i.e., thin
line), we expect to leave natural variability, which may
from month to month have a nonzero projection onto
this mode’s spatial pattern. This type of natural vari-
ability accounts for the ‘‘noise’’ about the best guess or
interpolated value (thick line).

b. OLR bias removal

To remove the artificial variability due to ECT
changes, the synthesized ECT mode described above is
subtracted from the OLR anomaly dataset. This reduces
the total anomaly variance from 107 to 105 (W m22)2.
REOF analysis is performed on the new bias-removed
OLR anomalies to determine the degree to which the
bias-removal procedure has been effective at removing
the unwanted variability. To avoid redundancy, the spa-
tial patterns are not shown; however, Table 5 shows the
linear correlations between the time series amplitudes
of the REOF modes before and after the bias-removal
procedure. The table demonstrates that all (i.e., the first
seven) of the physical modes of the original dataset (i.e.,
modes other than mode 4) are well captured by one or
a combination of two modes in the bias-corrected dataset
(indicated in boldface). For example, the canonical
ENSO mode still shows up as mode 1, the second and
third modes before the bias removal show up as the
third (and to a lesser extent the sixth) and second modes
after the bias removal, the fifth and sixth modes before
the bias removal show up as the fifth and (primarily)
the fourth modes after the bias removal, etc. Further, all
the modes in the new bias-corrected dataset have very
poor correlation with the original mode 4 (the greatest
is 20.23). The results in this table illustrate that the
above methodology is an effective approach for re-
moving the unwanted–artificial ECT variability in the
tropical OLR data.
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c. HRC mode identification

Figure 9 shows the rotated EOF eigenmodes of the
HRC anomalies. As with the OLR, only the first six
rotated modes are presented and discussed, even
though the actual rotation included eight modes (see
section 3). The first mode (Fig. 8a; see Fig. 5b), which
accounts for 6.6% of the anomaly variance, has pos-
itive spatial loading over most of the Tropics, with two
strong centers near 108S over the landmasses of south-
ern Africa and South America, and a weak center near
the equator around the Maritime Continent. The second
mode (Fig. 9b; see also Fig. 5c), which accounts for
6.5% of the anomaly variance, has positive spatial
loading over most of the domain, with centers around
58N over Africa, the Maritime Continent, and South
America. Even though the annual cycle has been re-
moved, both of the two modes exhibit some similarity
to the long-term overall mean HRC distribution (Fig.
10), except for a meridional shift and a relative en-
hancement over land. The associated time series of
these two modes both show cyclic behavior with an
annual time period. However, these annual-scale os-
cillations fluctuate around different values for different
periods. For example, in mode 1 (Fig. 9a), the oscil-
lations fluctuate around a negative value during the
period from 1973 to 1978 but fluctuate around a pos-
itive value during the period from 1983 to 1987. More-
over, oscillations that fluctuate around negative values
all have similar amplitudes, as do those that fluctuate
around positive values, implying that these oscillations
can be roughly categorized into two groups according
to the mean values they fluctuate around. By examining
these two time series and the information in Table 1
and Fig. 2, we find that the two groups of oscillations
for both modes are closely correlated with changes in
the satellites, especially changes in the satellite ECT
(morning or afternoon). In fact, based on these apparent
biases, the 12-month annual cycles computed from
morning viewing satellites will not be the same as that
computed from the afternoon viewing satellites. This
implies that the annual cycle computed from the whole
data period will be a weighted mean of the two annual
cycles computed from the morning and afternoon
views. Thus, removing this long-term mean annual cy-
cle will still leave annual-scale residual oscillations in
the data, with the oscillations being different for the
morning and afternoon satellite periods. For example,
assuming that an afternoon view of the annual cycle
of deep convection will have a larger amplitude than
a morning view of the annual cycle,4 the two annual
cycles can be expressed as

4 This would be the case for most tropical landmasses since their
dry seasons would be about the same (i.e., near zero), and their wet
seasons would be markedly different due to the strong diurnal cycle
in convection usually present over land.

afternoon view

y 5 (a 1 d)[1 2 sin(2px/12)] (1)a

and

morning view

y 5 (a 2 d)[1 2 sin(2px/12)], (2)m

where x is the month from 1 to 12. Further, if we assume
that the periods containing satellites with morning and
afternoon ECT are of the same length (which is nearly the
case for the HRC data), then the mean annual cycle of
the whole data period is the average of the above cycles:

mean annual cycle
y 5 (ya 1 ym)/2 5 a[1 2 sin(2px/12)]. (3)

If we remove this mean annual cycle (y), the residuals
for periods with afternoon and morning ECT will be

afternoon view y9 5 y 2 ya

5 1 d[1 2 sin(2px/12)] (4)

and

morning view y9 5 y 2 ym

5 2 d[1 2 sin(2px/12)], (5)

respectively. The residuals still have annual-scale os-
cillations and will exist in the HRC anomalies.

The reason for the larger loadings over land in these
two modes is also related to the satellite ECTs. Diurnal
variations in convection are generally larger over land
than over ocean (e.g., Hendon and Woodberry 1993),
so that biases introduced by changes between afternoon
and morning satellite ECTs will be stronger over land
than over ocean. Indeed, the first two modes shown in
Fig. 9 tend to produce enhanced positive HRC anom-
alies, especially over land, when the satellite ECT is in
the afternoon. The above discussion strongly suggests
that these two modes represent satellite-related biases
in the HRC dataset.

The third mode (Fig. 9c), which accounts for 4.4%
of the anomaly variance, is the canonical ENSO mode
of the HRC, with features similar to the first OLR mode
(Fig. 3a). Because of the way the raw HRC data are
produced (binary values of ‘‘deep convection’’ sampled
once per day), it is not surprising that the HRC spatial
loading is not as smooth as that of OLR (cf. Waliser et
al. 1993). The time series of this mode consists mainly
of interannual variability with strong signals during the
1972–73, 1976–77, and 1987 El Niño events.

The fourth mode (Fig. 9d), which accounts for 4.3%
of the anomaly variance, is dominated by the 1982–83
El Niño event. The time series and spatial loading over
the Pacific basin are remarkably similar to the 1982–83
mode of the OLR (Fig. 3c). However, there is a relative
change between the OLR and HRC patterns in the signs
of the loadings over most of the African and South
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FIG. 9. Same as Fig. 3 except for the HRC anomalies. Loadings
have units of days month21. Contour intervals are 0.2 (0.3) days
month21 for the first two (last four) maps. See Figs. 5b,c.
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FIG. 10. Long-term mean HRC distribution (days month21).

American landmasses compared to their signs over the
Pacific Ocean. The fifth mode (Fig. 9e) accounts for
4.2% of the anomaly variance. It has a spatial pattern
very similar to the second OLR mode before the bias
removal (Fig. 3b) and is, therefore, mostly associated
with ENSO variability, in this case, especially the 1984
La Niña event.

The sixth mode (Fig. 9f), which accounts for 3.4%
of the anomaly variance, has mostly very small loadings
over the whole of the Tropics, except for a strong pos-
itive loading center in the eastern Indian Ocean. This
feature suggests that this mode may be related to Asian
monsoon variability over this area. Indeed, the weak
(1979, 1982, 1983, and 1987) and strong (1984, 1985,
and 1986) monsoon years, as indicated in Webster and
Yang (1992), appear to be captured fairly well by the
associated time series.

The above analysis indicates that the first two modes
of HRC are those primarily related to changes in satellite
ECT. These two modes account for 13.1% of the anom-
aly variance of HRC. This implies that biases caused
by satellite ECT changes are relatively larger in the HRC
than in the OLR, necessitating their removal for inter-
annual variability and other climate studies.

d. HRC bias removal

The analysis in the previous section suggests that the
two modes identified as being satellite modes are mainly
related to morning or afternoon ECTs. Thus, to simplify
the process of removing the satellite-related bias, the
satellite ECT can be regarded as a binary variable (A.M.
or P.M. only). Despite the differences between different
A.M. or P.M. ECTs (e.g., 1430 versus 1530 LST) or the
slow drift of the ECTs (e.g., Fig. 2), this discrete cat-
egorization will be shown to account for most of the
error related to the satellite ECT in the HRC dataset.
Along these lines, satellites are grouped according to
morning or afternoon ECTs, respectively. Then the mean
cycles of the REOF time series over the 12-month cal-
endar (hereafter referred to as annual oscillation, as op-
posed to the climatological annual cycle, which has been
removed) for the morning and afternoon groups are cal-
culated separately for the time series of the first two
modes (satellite modes; Figs. 9a,b). For example, the
mean annual oscillation of the morning group for mode
1 was calculated from REOF time series when the sat-
ellite ECT was in the morning, such as when the NOAA
SR series and NOAA-6 were operational. The four re-
sulting 12-month cycles, A.M. and P.M. cycles for mode

1 and mode 2, respectively, are then used to reconstruct
new series according to the corresponding satellite ECT
(morning or afternoon) and the month of the year. The
resulting reconstructed time series for the two modes
are shown as the thick gray lines in Fig. 11. Also shown
in Fig. 11 are the original HRC REOF time series as
thin lines. Similar to the OLR case, the reconstructed
time series (thick gray lines in Figs. 11a,b) are used to
multiply the associated spatial patterns (Figs. 9a,b). The
sum of these two modes is an estimate of the variability
related to the changes of the satellite ECT and is sub-
tracted from the total HRC anomaly dataset to produce
a new, bias-removed HRC dataset.

The above bias-removal procedure needs a timetable
of satellites used in the HRC derivation and their as-
sociated ECTs. As mentioned earlier, during some pe-
riods when there were more than one operational sat-
ellite, it is uncertain which satellite was used to derive
the HRC data. Fortunately, these periods are limited and
only account for a small fraction of the whole data rec-
ord. Because the satellite ECT is considered a binary
variable in this procedure, we only need to distinguish
whether a morning or afternoon equatorial crossing sat-
ellite was used in deriving the HRC data. In this study,
we assume that the correct satellite information will
maximize our ability to capture the satellite-related bias
and to subsequently remove the biases via the above
procedure.

The first guess at the satellite timetable for deriving
the HRC was based primarily on Garcia (1985), except
for modifications for the period from January 1971 to
May 1974, when information in Table 1 overrides that
in Garcia (1985) (because of the inaccuracy mentioned
in section 2). Using this initial table, the above bias
removal procedure was applied. We found that the re-
constructed time series of both modes matched well with
the original (i.e., using plots similar to Fig. 12, not
shown), except for some periods when there were both
A.M. and P.M. operational satellites. For example, from
16 July 1979 to 27 February 1981, both TIROS-N (af-
ternoon ECT) and NOAA-6 (morning ECT) were op-
erational. From 24 August 1981 to 20 June 1983, both
NOAA-6 and NOAA-7 (afternoon ECT) were operation-
al. This first guess of the HRC derivation timetable was
then modified only for the periods when there was more
than one operational satellite and the satellite ECT (A.M.
or P.M.) used could be ambiguous. Adjustments were
made so that the agreement between the reconstructed
and the original time series was greatest within the con-
straints of the available satellite information. In fact, it
was this procedure that led to the initial deduction that
ITOS-1, ESSA-9, and NOAA-1 were actually afternoon
ECT satellites and not morning satellites as the HRC
atlas indicates. The relatively large number of these
types of unknowns with respect to the HRC ECT in-
formation (e.g., which satellite was used and what its
exact crossing time was) compared to those for OLR,
along with the need to describe a more complex bias
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FIG. 11. Time series (thick gray lines) constructed by applying the A.M. or P.M. mean 12-month
cycle based on morning or afternoon satellite ECT and month of year for the HRC REOF modes
(a) 1 and (b) 2. The original time series are also plotted as thin lines (same as Figs. 9a,b).

relationship for HRC (i.e., an offset according to time
of day on top of a stronger 12-month modulation) than
for OLR (i.e., an offset according to time of day alone),
inhibited us from tackling a more rigorous bias-removal
method that may have included variations of ECT within
the morning or afternoon categories (i.e., ECT drift).

Table 3 is the estimated satellite timetable based on
the above analysis and adjustment procedure. Periods
when the satellite used for the HRC derivation is dif-
ferent from that specified in Garcia (1985) are indicated.
For example, during period from November 1972 to
May 1974, the HRC could have only been derived from
NOAA-2 or NOAA-3 instead of ITOS-1, ESSA-9, and
NOAA-1 as stated in Garcia (1985). In addition, the large
drift associated with ESSA-9 (Fig. 2) induced a change
in ECT time that led to it having significantly better

agreement if the last 7 months of its lifetime were cat-
egorized as a morning crossing time (i.e., about 6:00
A.M.). Further, during the period from July 1979 to Au-
gust 1979, both TIROS-N and NOAA-6 were operational
(Table 1), and thus NOAA-6 may have been used instead
of TIROS-N, while from September 1981 to January
1982 and from June 1982 to September 1982, both
NOAA-6 and NOAA-7 were operational, and thus
NOAA-6 may have been used instead of NOAA-7 (O.
Garcia 1996, personal communication). In each of these
last three overlapping cases, the analysis indicated a
different satellite (ECT) than was specified in Garcia
(1985) (see Table 3).

As mentioned above, the reconstructed time series
from the above bias-removal procedure based on the
estimated HRC satellite timetable in Table 3 are shown



SEPTEMBER 1997 2141W A L I S E R A N D Z H O U

FIG. 12. Map of linear trends in rain gauge measurements between 1971 and 1990. Values are
in mm month21. From Morrissey and Graham (1995).

TABLE 6. Correlation of HRC REOF time series before and after bias removal. Correlations greater than 0.3 are shaded.

Mode
no.

Before

1 2 3 4 5 6 7 8

After
1
2
3
4
5
6
7
8

20.30
0.13
0.04
0.06
0.14

20.05
20.09
20.09

20.07
0.11
0.02

20.31
20.04
20.22

0.04
20.15

0.03
0.95
0.02
0.10

20.05
0.09

20.06
20.02

20.04
0.07

20.97
20.09

0.01
20.11

0.14
0.03

20.79
20.10

0.03
0.09

20.29
20.04

0.22
20.19

20.26
0.00
0.00

20.66
0.05
0.13

20.50
0.43

0.00
0.03

20.02
0.23

20.78
20.08
20.12

0.45

20.05
0.00

20.05
20.15
20.12

0.90
0.25

20.10

in Fig. 11 in thick gray lines. The original time series
of the first two modes are also shown in Fig. 11 as thin
lines. It can be seen that the two synthesized curves
(thick) are in fairly close agreement with the time series
of the first two modes (thin lines). The correlations be-
tween the synthesized series and original series are 0.78
and 0.75 for mode 1 and mode 2, respectively. The
modified HRC dataset is produced by the bias removal
procedure mentioned above, and EOF and REOF anal-
yses are performed. To avoid redundancy, the resulting
REOF modes are not shown; however, the correlations
between the time series prior to and after the bias re-
moval are listed in Table 6.

After the bias removal, the total anomaly variance
changes from 1.85 to 1.70 (days month21)2. From Table
6, we can see that after the bias removal, the first mode
is actually the fifth mode prior to bias removal, the
second mode corresponds to the third mode prior to bias
removal, the third mode corresponds to the fourth mode
prior to bias removal, and the sixth mode corresponds
to the eighth mode prior to bias removal. Their spatial
patterns (not shown) also have a near one-to-one cor-

respondence. The fourth, seventh, and eighth modes,
from Table 6, are a redistribution of variances associated
with the prior sixth and seventh modes and to a minor
extent the second mode. Again, note the weak corre-
lation of all the modes after the bias removal with the
satellite modes 1 and 2 before the bias removal.

5. Discussion

a. OLR and HRC bias differences

It is apparent from Figs. 3d and 9a,b (or Figs. 5a–c)
that the satellite ECT biases do not appear the same way
in the OLR and HRC datasets. The satellite modes ap-
pear in the HRC as the first two modes, which account
for 13.1% of the anomaly variance, while in the OLR,
the satellite mode appears as the fourth mode, which
accounts for 4.4% of the anomaly variance. This means
the that HRC dataset is more severely contaminated by
satellite biases. Apart from the difference of relative
magnitude of the bias, the time series and spatial pat-
terns of the OLR and HRC satellite modes do not share
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resemblance either. The spatial patterns in the two HRC
satellite modes have a distinct feature of large loadings
over landmasses and warm pool regions, which is dif-
ferent from the corresponding OLR satellite mode. The
time series of HRC satellite modes show variations of
two annual-scale oscillations related to morning and af-
ternoon ECTs, while no annual oscillatory behavior is
evident in the time series of the OLR satellite mode.
These differences can be explained by considering the
differences in the sampling and radiometric character-
istics of the OLR and HRC datasets.

First, taking the OLR diurnal cycle in Sahara shown
in Fig. 6 as an example shows that the difference in
OLR measured at 0800 and 1500 LST can be over 30
W m22 (Fig. 6, top), but the difference of the average
OLR of two measurements at a 12-h interval—for ex-
ample, the difference between the average of measure-
ments at 0800 and 2000 and the average at 0300 and
1500 LST—is only about 8 W m22. Similar results
should hold for the HRC as well, especially in regions
in which the diurnal cycle is significant. Since only
daytime measurements were used in the HRC derivation
but twice per day measurements were used to derive the
OLR, the difference between morning and afternoon
ECT measurements is relatively larger in the HRC than
that in the OLR; that is, satellite ECT change will cause
a relatively larger bias in the HRC than in the OLR.
Also, because the convective diurnal cycle over land is
usually stronger than over sea, morning and afternoon
satellite ECT changes will produce a larger artificial
variation over land and, thus, result in a large difference
in spatial loadings between land and ocean, as is ob-
served in the HRC.

Second, there is a fundamental difference between
the quantities measured by the HRC and OLR. HRC is
only an indication of presence of deep convective
clouds. No other cloud type or process is represented
in the HRC. Thus, in the HRC, due to higher convective
probabilities in the afternoon (typically observed over
land areas), morning observations of the climate (e.g.,
the annual cycle) will have consistently lower values
than the afternoon observations. As described in Eqs.
(1)–(5), removing the long-term mean annual cycle to
produce the HRC anomalies still leaves annual-scale
residual oscillations for morning and afternoon obser-
vation periods and the residual oscillations will be 1808
out of phase. In fact, as shown in Fig. 11, the oscillations
in the time series for morning and afternoon satellite
ECTs are about 6 months out of phase. This, in con-
junction with the overall north–south offset in the as-
sociated convection patterns, combines to describe the
(annual scale) oscillation that leads to the overall ap-
parent increase or decrease of the true annual cycle
brought about by a change in the sampling time (section
4c). In contrast, OLR is primarily determined by either
cloud-top temperature, if clouds are present, or by the
earth’s surface temperature, as well as the water vapor
content in the atmosphere, if the sky is clear. Because

of the presence of both conditions over time, the month-
ly OLR is a mixture of high-temperature surface emis-
sion and low-temperature cloud-top emission. Typically,
since convection is stronger (e.g., lower cloud-top tem-
perature) and surface temperature is higher in the af-
ternoon than in the morning, the afternoon OLR emis-
sion is from either a cloud top that is colder than in the
morning or a surface that is warmer than in the morning.
Thus, mixing emissions from cloud top and surface to
form the monthly OLR will to some extent cancel out
the distinct difference between morning and afternoon
measurements. Also, OLR measurements are dominated
by afternoon ECT satellites and are observed twice per
day at 12-h intervals, the latter providing a better es-
timate of the daily average. All these factors contribute
to the fact that no annual-scale oscillation occurs in the
first few OLR REOF modes as it does for the HRC after
the long-term mean annual cycle is removed.

The above analysis has shown that both the OLR and
HRC datasets are subject to biases resulting from
changes in the satellite ECT. However, after bias re-
moval, the REOF modes of these two datasets have a
much closer correspondence. This is to be expected
since the OLR and HRC are both widely considered to
be indicators of convective activity in the Tropics, and
it also suggests that the bias-removing methods devel-
oped in this study are reasonably effective.

b. Tropical climate trend

As mentioned in the introduction, OLR has been used
in a number of studies that indicate a decadal-scale trend
in convection–precipitation in the tropical western-cen-
tral Pacific during the 1970s and 1980s (e.g., Nitta and
Yamada 1989; Graham 1995; Morrissey and Graham
1996). However, in each case, the confidence that can
be attributed to the computed trends is diminished by
the presence of sensor and satellite ECT changes that
occur within the OLR data (e.g., Table 1). In addition
to OLR data, Morrissey and Graham (1996) analyzed
rain gauge data between 1971 and 1990, and found a
trend and spatial loading pattern consistent with the spa-
tial pattern of the OLR trend. Their trends in rain gauge
data are shown in Fig. 12. Maximum values in the west-
ern–central tropical Pacific are about 0.3–0.5 mm
month21, which is equivalent to an increase in monthly
precipitation of about 72–120 mm over the 20-yr record.
Morrissey and Graham (1996) also showed downward
trends of OLR from 20.10 to 20.18 W m22 month21

over the same region, which represents a decline of
about 217 to 230 W m22 during the 14-yr period be-
tween June 1974 and December 1987. While sampling
from rain gauges has its own difficulties (Morrissey et
al. 1995), the agreement between the rain gauge and
OLR data provides additional support that such a trend
is not an artifact of the data being analyzed (cf. Flohn
et al. 1990; Gutzler 1992; Gaffen et al. 1991; Oort and
Liu 1993).



SEPTEMBER 1997 2143W A L I S E R A N D Z H O U

FIG. 13. Maps of linear trends in the OLR and HRC datasets (a) and (b) before and (c) and (d) after the ECT bias-removing procedures
have been applied. Shading indicates positive (negative) trends in OLR (HRC), with units are in W m22 month21 (days month22). Contour
intervals are (a) 0.02, (b) 0.005, (c) 0.02, and (d) 0.004.

In the interest of understanding how the satellite ECT
biases may affect the trends found in the OLR and HRC
data, we have computed the linear trend at each spatial
point in the OLR and HRC before and after the biases
have been removed. Figures 13a and 13b show the
trends in the OLR and HRC data, respectively, before
the bias removal. Note that the shading indicates pos-
itive (negative) trends for the OLR (HRC). In each case,
there is evidence that the ECT modes are adversely
affecting the trend calculation. The spatial pattern of the
OLR trend bears some resemblance to the OLR ECT
mode (Fig. 3d), indicating that the time series associated
with that particular mode has an overall (decreasing)
trend. The spatial pattern of the HRC trend indicates an
overall increase in convection with a pattern similar to
the mean, and thus it also exhibits artificial changes due
to its ECT modes (Figs. 9a,b). However, in both the
uncorrected OLR and HRC cases, there is a signature
of a trend in the western-central Pacific that is similar
to the rain gauge trends shown in Fig. 12, although
distinguishing these from the ECT biases is somewhat
difficult.

Figures 13c and 13d (see Figs. 5d,e) show the trends
in the OLR and HRC data, respectively, after the bias
removal. As expected, the bias-removal procedures di-
minishes the effects from the ECT modes on the trend.
In addition, the bias removal leaves a more pronounced
feature in the western-central Pacific, which shows a
rather close spatial correspondence to the rain gauge
trends shown in Fig. 12. The values of the trends in
these regions are about 20.08 W m22 month21 and 0.01
days month22. These correspond to a decrease of 21 W
m22 over the 266-month OLR record and an increase
of 2.0 days month21 over the 204-month HRC record.
Previous studies comparing OLR and HRC directly
(Waliser et al. 1993) or comparing how they each vary
with SST (Waliser and Graham 1993) show that, in
general, a 8–10- W m22 OLR change is roughly equiv-
alent to a 1 day month21 HRC change. Thus, the trends
in the HRC and OLR for the western–central Pacific
tend to be in reasonable agreement with respect to their

spatial patterns and magnitudes. Note that the two da-
tasets do not overlap, so neither trend appears to be
inherently tied to end points within one dataset or the
other.

Comparison to the trends in the rain gauge data can
be made by considering the regression relation between
tropical Pacific rainfall (Coral Island) and HRC com-
puted by Kilonsky and Ramage (1976), which suggests
that a 1 day month21 HRC change is equivalent to 39
mm month21. Converting the HRC trend over the period
1971–87 using this relation gives 0.4 mm month21, or
about 80 mm total increase over the period. These values
correspond closely to the trends observed directly from
the rain gauges between 1971 and 1990. The above
agreement in the spatial patterns and magnitudes of the
trends in the three different rainfall indices, HRC, OLR,
and rain gauges, strongly suggest that the decadal trend
observed in this area of the Tropics is distinct from the
satellite ECT biases and, in fact, appears to be inde-
pendent of the instruments or measurement techniques
pertaining to the three rainfall indices.

6. Summary

The objective of this study is to examine the impacts
from satellite ECT changes on the OLR and HRC da-
tasets and to design appropriate and robust methods to
remove these satellite-dependent biases. Rotated em-
pirical orthogonal function analysis is performed on
both the monthly OLR and HRC anomalies to help dis-
tinguish between artificial modes of variability and those
associated with real variability. Results from the anal-
ysis show that significant errors are introduced by
changes in the satellite ECT, and they appear differently
in the two datasets. The primary satellite-related bias in
the OLR appears as the fourth REOF mode and accounts
for 4.4% of the OLR anomaly variance. Its spatial pat-
tern exhibits a strong surface signature over land, with
the opposite sign over many of the deep convective
regions of the ocean. During some periods, these biases
result in widespread errors of over 10 W m22, which
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are sustained for several months to over a year. In other
cases, the transitions between satellites (e.g., from
NOAA-12 to NOAA-14) induce abrupt, artificial changes
in the OLR as high as 16 W m22. In the HRC, the
satellite-related bias appears as the leading two REOF
modes, which account for 13.1% of the HRC anomaly
variance. The spatial patterns of the HRC biases are
indicative of an overall change to the mean climatolog-
ical convection pattern, while the two REOF time series
show annual-scale oscillations with phase differences
between periods of morning and afternoon satellite
ECTs. These results can be understood by considering
the sampling and radiometric characteristics of the OLR
and HRC datasets, as discussed in sections 4 and 5a.

To remove the satellite ECT biases, the time series
of the satellite-related modes are reconstructed by using
detailed knowledge of the satellite ECTs so that, to the
extent possible, only the artificial variability related to
satellite ECT changes is captured and the natural vari-
ability is excluded. For OLR, since the bias has a close
relationship with the satellite ECT, the time series is
reconstructed based on a polynomial fit of the satellite
mode time series with the exact satellite ECTs. For HRC,
the primary biases are shown mainly as annual-scale
oscillations with systematic difference between morning
and afternoon ECT periods. In this case, the time series
are reconstructed by compositing the mean annual-scale
oscillations of the satellite modes’ time series from pe-
riods associated with morning and afternoon ECT, re-
spectively. These reconstructed time series, for both the
OLR and HRC, are then used in conjunction with the
associated spatial patterns to compute the satellite ECT
biases, which are removed from the datasets.

The revised datasets represent a marked improvement
over the originals and provide an improved resource to
study intraseasonal and longer timescale regional cli-
mate variations, large-scale interannual variability, and
global-scale climate trends. For example, the leading
two HRC REOF modes in the revised dataset represent
interannual variability instead of nonphysical biases. In
addition, the revised OLR and HRC datasets are shown
to have much better consistency over the Tropics, with
their leading REOF modes having a near one-to-one
correspondence. Furthermore, analyses of the long-term
trends in both datasets show that the satellite biases
induce artificial trends in the data and that these artificial
trends are reduced in the corrected datasets. Finally, the
trends that do remain in the corrected datasets imply an
increase in precipitation in the tropical western–central
Pacific that appears to be spatially independent of the
satellite biases and agrees with results of previous stud-
ies employing rain gauge data over a similar period (e.g.,
Morrissey and Graham 1996).
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APPENDIX

EOF Significance Test

In order to determine the number of modes to keep
in the EOF rotations, we applied the N-rule significance
test developed by Preisendorfer et al. (1981). An ex-
ample of its application to cyclone frequency data can
be found in Overland and Preisendorfer (1982). In the
N-rule test, a dataset of random numbers with the same
dimensions in time (N points) and space (P points) is
produced and then the EOF procedure is performed. The
eigenvalue percentages (i.e., the percentage of the total
anomaly variance described by an eigenvalue) are then
sorted in descending order, giving a mode 1 value, a
mode 2 value, . . . , and finally a mode P value. This
procedure is performed on 100 different random data-
sets. The eigenvalue percentages for each mode (1, . . . ,
P) are then sorted in descending order. This will give a
list of 100 mode 1 eigenvalue percentages, 100 mode
2 eigenvalues percentages, . . . , and finally a list of 100
mode P eigenvalues percentages, each in descending
order. The first eigenvalue percentage in each list de-
notes a 99% significance level, the fifth eigenvalue per-
centage in each list denotes a 95% significance level,
etc. The inference is that if a particular eigenvalue per-
centage, say the mode 1 value, from an observed dataset
exceeds the largest mode 1 eigenvalue percentage ob-
tained from 100 random datasets, then with at least 99%
confidence, it can be said to be significantly different
than random noise.

The above procedure was performed for both the OLR
and HRC datasets. However, in the interest of making
a conservative estimate, an attempt was made to deter-
mine the actual number of independent samples in time
and space (i.e., N and P) for each dataset. For the case
of the OLR, NOLR equals 266 (months) and POLR equals
3600 (144 3 25) spatial points. However, the autocor-
relation computed in the zonal direction at each merid-
ional point, averaged over time, suggests a decorrelation
scale (1/e) as large as 208 (;8 points). Likewise, the
autocorrelation computed in the meridional direction at
each zonal point, averaged over time, suggests a de-
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FIG. A1. Eigenvalues, in terms of percentages of anomaly variance
explained, from the (a) OLR and (b) HRC EOF decompositions (open
circles), along with estimated values of their 99% confidence limits
(solid lines). See discussion in the appendix and section 3. Also shown
for comparison purposes are the eigenvalues of the REOFs.

correlation scale as large as 7.58 (;3 points). Together,
these two factors reduce POLR from 3600 to 144 (18 3
8). The autocorrelation computed in the temporal di-
rection at each spatial point, averaged over the merid-
ional direction, suggests that the decorrelation scale is
just under 2 months. Again, in the interest of a con-
servative estimate, we assume 2 months and reduce NOLR

to 133. Similar procedures for the HRC give a decor-
relation scale of 8.08 (;4 points) in the zonal direction,
4.08 (;2 points) in the meridional direction, and a near-
2-month decorrelation in time. These values reduce PHRC

and NHRC to 540 (45∗12) and 102, respectively. For a
discussion regarding the differences in decorrelation

scales between the OLR and HRC, see Waliser et al.
(1993).

Based on the above N and P values for OLR and
HRC, N-rule significance tests were performed. Figure
A1 shows the results of the test. The solid thin lines in
the plots show the 99% confidence limits. The lines with
open circles show the eigenvalue percentages from the
OLR (Fig. A1a) and HRC (Fig. A1b) EOF decompo-
sitions. For the OLR (HRC), the first seven (eight)
modes are judged to be significant by the 99% confi-
dence limit and, thus, were the modes included in the
EOF rotation procedure (sections 4a and 4c). For com-
parison purposes, the plots also show the eigenvalue
percentages for the rotated modes (lines with filled cir-
cles).
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